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ABSTRACT
Recently, interaction techniques in which the user selects screen
targets by matching their movement with the input device have
been gaining popularity, particularly in the context of gaze interac-
tion (e.g. Pursuits, Orbits, AmbiGaze, etc.). However, though many
algorithms for enabling such interaction techniques have been pro-
posed, we still lack an understanding of how they compare to each
other. In this paper, we introduce two new algorithms for matching
eye movements: Profile Matching and 2D Correlation, and present a
systematic comparison of these algorithms with two other state-of-
the-art algorithms: the Basic Correlation algorithm used in Pursuits
and the Rotated Correlation algorithm used in PathSync. We also
examine the effects of two thresholding techniques and post-hoc fil-
tering. We evaluated the algorithms on a user dataset and found the
2D Correlation with one-level thresholding and post-hoc filtering
to be the best performing algorithm.

CCS CONCEPTS
•Human-centered computing→ Interaction techniques; In-
teraction devices;
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1 INTRODUCTION
Most graphical user interfaces are largely static, displaying widgets
that remain in place until the user scrolls or transitions to a different
page. However, recent work has been exploring alternatives to static
layouts, where elements perform distinct movements that can be
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matched by the user to select them [Velloso et al. 2017]. Velloso
et al. refer to this principle as Motion Correlation [Velloso et al.
2017], encompassing techniques based on a wide range of devices,
including mice [Fekete et al. 2009; Williamson and Murray-Smith
2004], accelerometers [Verweij et al. 2017b], depth cameras [Carter
et al. 2016], and webcams [Clarke et al. 2016].

Of particular interest to us are techniques that employ this prin-
ciple for gaze interaction. When following a moving target, our
eyes engage in smooth pursuit, an eye movement that is difficult
to fake and roughly matches the trajectory of the target [Vidal
et al. 2013]. This allows us to compare the trajectory of the gaze
point to those of the moving targets to detect which target is being
followed. Such principle has been employed in previous works to
unobtrusively calibrate the eye tracker [Pfeuffer et al. 2013], to
allow for calibration-free interaction [Vidal et al. 2013], to enable
interaction with small screens [Esteves et al. 2015b], to control
smart environments [Velloso et al. 2016], etc.

A crucial step in these techniques is to quantify the similarity
between themovement of the eyes and those of the targets. Previous
works have proposed a variety of alternatives, including normalised
Euclidean distance [Fekete et al. 2009], Pearson’s correlation [Vidal
et al. 2013], and Pearson’s correlation on rotated data [Carter et al.
2016]. In this paper we propose two new algorithms for eye-target
movement matching: Profile Matching and 2D Correlation. The 2D
Correlation algorithm is based on the fit of the target trajectory as an
approximation for the gaze point. The Profile Matching algorithm
computes the similarity between normalized profiles generated by
the gaze and target movements.

We compare these to two state-of-the-art algorithms used for
gaze-based motion correlation detection — the original Pursuits
algorithm [Vidal et al. 2013] and the extension proposed in Path-
Sync [Carter et al. 2016]. We evaluated them in the dataset collected
in the development of Orbits [Esteves et al. 2015b].

Our results suggest that the 2D Correlation algorithm outper-
forms the other three when used in conjuction with a post-hoc
filter, as implemented by Carter et al. [Carter et al. 2016]. We also
analysed the effects of the window size of the post-hoc filter on the
recognition performance, and found that, for this dataset, a window
size of 30-40 frames (1s) offered the best results.

In summary, we contribute (1) two new algorithms for motion
correlation detection; (2) the first empirical comparison of these
new algorithms to previous ones; (3) an analysis of the effect of the
window size of the post-hoc filter on the algorithm performance.
These results provide an important stepping stone for the future de-
velopment of gaze interaction techniques based on smooth pursuit
and for motion correlation techniques in general.

https://doi.org/10.1145/3204493.3204524
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2 RELATEDWORK
2.1 Selection by Motion Correlation
The idea of using motion correlation for selection has its origins
in the work of Williamson and Murray-Smith [Williamson 2006;
Williamson and Murray-Smith 2004]. The authors built prototypes
that introduced small disturbances in the movement of each se-
lectable interface element. Inspired by control theory, they looked
for signs that the user was attempting to match or cancel these dis-
turbances to identify which element they wanted to select. Fekete
et al. took this idea further by incorporating cyclical movement
into conventional buttons [Fekete et al. 2009]. Rather than clicking
on the button to select it, the user had the choice to match the
movement of its corresponding orbiting widget with the mouse.

Later work took this idea to contexts beyond the desktop. Carter
et al. adapted the principle for interaction with public displays
using a Kinect in PathSync [Carter et al. 2016; Cox et al. 2016].
As advantages of the technique, the authors found that it made
the gestures available in the interface more visible and allowed
cursorless multi-user interaction. Because these techniques do not
rely on the absolute position of the input device, they can be used in
sensors that are better suited to capturing relative movement, such
as accelerometers. Verweij et al. demonstrated that it is possible
to employ this principle by sensing hand movements using the
sensors in smartwatches [Verweij et al. 2017a,b,c].

Because users are able to match movements using many body
parts, previous works have shown applications that go beyond hand
gestures. In SmoothMoves, Esteves et al. tracked the user’s head
movements using an augmented reality headset to match the mo-
tions being displayed in the AR interface [Esteves et al. 2017]. Clarke
et al. abstracted from the body part that is matching the movement
by tracking any matching body part using a webcam [Clarke et al.
2017, 2016; Clarke and Gellersen 2017]. The authors showed that the
technique can work with movements ranging from a hand motion
while holding a cup of tea to feet movements.

These works demonstrate the wide range of input devices that
can be used with motion correlation. For an in-depth discussion of
the principle and design guidelines, see [Velloso et al. 2017].

2.2 Selection by Smooth Pursuits
As well as the advantages offered to input devices discussed above,
motion correlation is particularly well suited for gaze interaction.
When our eyes follow a moving target, they engage in smooth
pursuits, an eye movement that is characteristically smooth in
comparison to saccades; that is difficult to fake, as it requires a
moving object for the eyes to latch onto; and that is comfortable to
perform, as the eyes are naturally drawn to movement.

The idea of using motion correlation in the context of gaze in-
teraction was first proposed by Vidal et al. in Pursuits [Vidal et al.
2013]. The authors demonstrated the applicability of the technique
for spontaneous interaction with public displays, gaming, and au-
thentication. Because the eyes are naturally drawn to movement,
Pfeuffer et al. leveraged this principle to calibrate the eye tracker
without the user even being aware of the process [Pfeuffer et al.
2013]. One of its advantages is that it allows the procedure to know
whether the user was actually following the calibration target or

Figure 1: Behaviour of the four similaritymetrics on sample
data fromEsteves et al. Left: the user actively follows the tar-
get. Right: the user reads the time while ignoring the mov-
ing target. Top and Bottom: the movement of the gaze point
(black) in comparison to the target (blue and red). Middle:
the output of each metric computed in 30-sample windows.

was distracted. Khamis et al. showed that even moving text can be
used for this purpose [Khamis et al. 2016a].

Motion correlation is also helpful in enabling gaze interaction
in challenging settings. Given the difficulty of estimating the gaze
point in large horizontal surfaces, Newn et al. employed horizontal
motion correlation to enable users to select distant targets on an
interactive tabletop [Newn et al. 2016]. In Orbits, Esteves et al. en-
abled gaze interaction with smart watches by matching the user’s
eye movements to small targets moving in circles on the face of the
watch [Esteves et al. 2015a,b]. Motion correlation allowed the au-
thors to make more targets available than it would have otherwise
been possible with touch input in such a small screen. In AmbiGaze,
Velloso et al. explored how to enable interaction based on motion
correlation with smart devices by deriving a design space of possi-
bilities for embedding movement into the environment, including
physical movements from a spinning windmill and a mechanical
arm [Velloso et al. 2016].

Despite the huge variety of devices and applications discussed
so far, they all share the same requirement—it is necessary to quan-
tify the similarity between the movement of the input device and
the movement of the targets. Due to the multiple ways in which
this comparison can be made, many metrics have been proposed
for this purpose, but without any comparison to previous metrics.
As a consequence, we know little about which algorithm works
best for each purpose or whether there is an optimal method that
works well in all settings. In this paper, we aim at answering this
question by comparing algorithms proposed in the literature on an
existing dataset collected with users. In addition, we propose two
new metrics and compare them to the state-of-the-art.
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3 SIMILARITY METRICS
The general problem that an appropriate similarity metric must
solve in the context of motion correlation is that, given a win-
dow of two synchronised time series of horizontal and vertical
coordinates—one pair for the gaze point and one pair for a given
target—the metric must output a high similarity value when the
user is following the target, and a low similarity when they are not.
Many metrics for comparing time series exist in the literature, in-
cluding Euclidean distance, Dynamic Time Warping, among others.
However, for our purposes, we only consider metrics that satisfy a
set of criteria.

First, it must be efficient. Because our goal is to use it for interac-
tive purposes, it must be able to make a decision in near real-time.
Second, it must be scale-invariant. One of the advantages of mo-
tion correlation techniques is that they do not need any calibration
between the input device and the targets. This is particularly useful
for gaze interaction, where maintaining an accurate calibration is
a challenge. Further, this enables interaction using devices such
as eye trackers based on electrooculography, as demonstrated by
Shimizu et al. [Shimizu et al. 2016] and Dhuliawala et al. [Dhuli-
awala et al. 2016], who implemented it for the JINS MEME EOG
glasses. Therefore, the metric must not rely on information about
the absolute coordinates of the gaze points or the targets, such
as in Kangas et al.’s approach [Kangas et al. 2016]. Third, it must
be sensitive to phase differences. This means that the algorithm
should be able to distinguish between, for example, multiple tar-
gets moving around a circle at the same speed, but slightly offset
from each other, as in Orbits [Esteves et al. 2015b]. As a fourth
and final requirement, we do not consider approaches based on
machine learning classifiers, such as the smooth pursuit detector
based on eye movement shape features built by Vidal et al. [Vidal
et al. 2012]. Though such approaches might offer potential solutions
in the future, they require the collection of extensive datasets to
demonstrate their validity, suffer the risk of overfitting the training
data, and generalise poorly to new contexts.

We compare the performance of the following algorithms: the
Basic Correlation (BC) used in Pursuits [Vidal et al. 2013], the Ro-
tated Correlation (RC) used in PathSync [Carter et al. 2016], and
two new ones—Profile Matching (PM) and 2D Correlation (2D).
Figure 1 illustrates the behaviour of the four metrics computed on
two datasets. On the left, the user is actively following a target
moving along a circular trajectory. On the right, the user is reading
the time on the watch while actively trying to avoid looking at the
moving target. We see that all metrics output high values in the
positive case and low values in the negative case. The challenge for
the algorithm then becomes to fine-tune its parameters to find the
best threshold that separates the two cases.

3.1 Basic Correlation
The use of Pearson’s Correlation to quantify the similarity between
the trajectory of the input device and the target was first suggested
by Fekete et al. [Fekete et al. 2009]. The authors evaluated its per-
formance by computing the sum of the correlation between the two
axes across the window. In their empirical evaluation, the algorithm
was outperformed by other metrics.

ALGORITHM 1: Basic Correlation (BC)
Input: AT × 2 time series with uncalibrated 2D coordinates of

the gaze point P(In) =
{
x Int ,y

In
t
}
at time t ; a T × 2

time series with the 2D coordinates
P(Out) =

{
xOutt ,yOutt

}
of a target on the screen at

time t ; a window size N < T .
Output: An array c of length T , with the lowest correlation

between the gaze point and the target.
for t ∈ N ..T do

W In
x ← {x

In
t−N ..x

In
t };

W In
y ← {yInt−N ..y

In
t };

WOut
x ← {xOutt−N ..x

Out
t };

WOut
y ← {yOutt−N ..y

Out
t };

ct ←min(cor (W In
x ,W

Out
x ), cor (W In

y ,W
Out
y ));

where cor (a,b) = E[(a−ā)(b−b̄)]
σaσb

;
end

Rather than adding the correlation coefficient for both axes into
a single metric, Vidal et al. computed the two and independently
checked whether both crossed the threshold set by the interface
designer [Vidal et al. 2013]. Similarly, Esteves et al. discarded the
axis with the highest correlation and only compared the axis with
the lowest correlation [Esteves et al. 2015b]. This works better
than adding the two correlation coefficients in cases where the
movement is correlated in one axis but not in the other, such as
when two targets are orbiting around the trajectory with the same
phase but in opposite directions. Algorithm 1 formally defines the
Basic Correlationmethod. Given that this is themost used algorithm
in the related work (e.g. [Esteves et al. 2015a,b; Khamis et al. 2015,
2016a,b; Vidal et al. 2013]), we use it as our baseline case.

3.2 Rotated Correlation
A problem that arises in the Basic Correlation algorithm is when,
in a given window, there is no change in the movement in one of
the axes. This happens, for example, when traversing one of the
edges of a square. In such cases, it is not possible to compute the
correlation in this axis, because the standard deviation of the target
trajectory is zero. This leads to a division by zero in the computation
of the correlation coefficient.

The problem was identified by Carter et al., who built an in-
terface with square movements similar to the Windows Metro
design [Carter et al. 2016]. To address this problem, the authors
suggested rotating both the target trajectory and the input device
trajectory by the same amount, so as to maximise the variance of the
target trajectory movement in both axes. They consider the optimal
rotation to be the one 45◦ away from the output of a Principal Com-
ponent Analysis, which is equivalent to multiplying the trajectory
by a rotation matrix with the eigenvectors of the trajectory and by
a 45◦ rotation matrix. The same approach was used in other works,
including Velloso et al. and Cox et al. [Cox et al. 2016; Velloso et al.
2016]. The Rotated Correlation algorithm is defined in Algorithm 2.
Despite the anecdotal improvement reported in these papers, there
are no published results that quantify the improvement over the
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ALGORITHM 2: Rotated Correlation (RC)
Input: AT × 2 time series with uncalibrated 2D coordinates of

the gaze point P(In) =
{
x Int ,y

In
t
}
at time t ; a T × 2

time series with the 2D coordinates
P(Out) =

{
xOutt ,yOutt

}
of a target on the screen at

time t ; a window size N < T .
Output: An array c of length T , with the lowest correlation

between the gaze point and the target.
for t ∈ N ..T do

RotMat ←

[√
2

2 −

√
2

2√
2

2

√
2

2

]
×

[
®v1x ®v2x
®v1y ®v2y

]
where ®v1, ®v2 are the eigenvectors of the matrix with{
xOutit ,yOutit

}
as columns.

...
...

uOutit vOutit
...

...


←


...

...

xOutit yOutit
...

...


× RotMat


...

...

uInt v Int
...

...

 ←

...

...

x Int yInt
...

...

 × RotMat

W In
u ← {uInt−N ..u

In
t };W

In
v ← {v Int−N ..v

In
t };

WOut
u ← {uOutt−N ..u

Out
t };WOut

v ← {vOutt−N ..v
Out
t };

ct ←min
(
cor

(
W In
u ,W

Out
u

)
, cor

(
W In
v ,W

Out
v

))
;

where cor (a,b) = E[(a−ā)(b−b̄)]
σaσb

;
end

Basic Correlation algorithm employed in other works, so we chose
this metric as the first comparison.

3.3 2D Correlation
A problem with the approaches presented so far is that they treat
the movement in each axis independently from the movement in
the other axis. In order to consider both axes simultaneously, we
take the basic idea of Pearson’s Correlation in the context of least
squares regression analysis and extend it to the two-dimensional
space. We use as a similarity metric the R2 of the target trajectory
as an approximation of the gaze point trajectory. However, we must
slightly modify the metric to account for the fact that in our case Y
is not a function of X.

We begin by centring and scaling each trajectory. We centre
each trajectory at zero and use as the scaling factor the standard
deviation of the axis with the largest variance. By using the same
scaling factor for both axes, we ensure that the scaled trajectory
has the same proportions of the original. It is important to note
that by treating each axis independently, the previous algorithms
scale the coordinates by different scaling factors, which may lead
to false positives in cases where the trajectory of one target is a
squashed or stretched version of the trajectory of another target
(e.g. comparing a circle against and ellipse).

ALGORITHM 3: 2D Correlation (2D)
Input: AT × 2 time series with uncalibrated 2D coordinates of

the gaze point P(In) =
{
x Int ,y

In
t
}
at time t ; a T × 2

time series with the 2D coordinates
P(Out) =

{
xOutt ,yOutt

}
of a target on the screen at

time t ; a window size N < T .
Output: An array c of length T , with the R2 similarity metric

between the gaze point and the target.
SDIn ←max

(
SD

(
x Int

)
, SD

(
yInt

))
;

SDOut ←max
(
SD

(
xOutt

)
, SD

(
yOutt

))
;

x Int ← scale
(
x Int , µ = 0, SDIn

)
;

yInt ← scale
(
yInt , µ = 0, SDIn

)
;

xOutt ← scale
(
xOutt , µ = 0, SDOut

)
;

yOutt ← scale
(
yOutt , µ = 0, SDOut

)
;

for t ∈ N ..T do

SSReд ←
∑t
i=t−N

√(
x Int − x

Out
t

)2
+
(
yInt − y

Out
t

)2
;

SSTotal ←
∑t
i=t−N

√(
x Int

)2
+
(
yInt

)2
;

ct ← R2 =
SSReд
SSTotal

;
end

We then compute the “regression” sum of squares (SSReд ) by
computing the Euclidean distance between the corresponding points
of the two normalised trajectories and by adding them up. We com-
pute the total sum of squares (SSTotal ) by calculating the sum of
the distances of the normalised gaze points to the centroid of the
trajectory. Because during the normalisation we centred the points
around the origin, the centroid of the trajectory is the point (0, 0).
We finally compute the R2 of the fit by dividing SSReд by SSTotal .
Algorithm 3 formally describes this approach.

3.4 Profile Matching
The trajectory described by the eye as it follows a moving target
during a time interval ∆t could alternatively be described by the
orthogonal profile of the gaze samples projected onto the baseline
®b = (PM − P0), with P0 being the first point in the time interval
and PM the farthest point from P0 during ∆t , as seen in Figure 2.
Observe that, in the particular case of circular trajectories, for long
arcs (greater than π ), PM is not the endpoint of the sequence.

Because gaze points are projected onto the baseline vector as
(u(t),v(t)), for t ∈ [1,N ], this profile representation is rotation
invariant and phase information is lost. Also, (u(t),v(t)) is further
normalized by | ®b | (the length of ®b) making the transformation in-
variant to scaling as well (we will use (û(t), v̂(t)) to denote the
normalized sequence).

Applying the same process to the orbits described by each target
i , the trajectory profile for the gaze data can be compared to each
target profile. The sum of squared differences (SSD), as defined in
(1), is used to quantify the similarity between profiles, where Ĝ is
the profile generated by the gaze samples and T̂i the profile of a
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Figure 2: Profile matching: Points within the time interval
are projected onto the longest baseline starting at P0. The
normalized rotated arrays (û (t) , v̂ (t)) are used formatching.

target i . Small SSD values indicate a good matching, i.e., that the eye
is following an orbit with approximately the same angular velocity
(but not necessarily with the same phase in the particular case of
circular trajectories).

SSD(Ĝ, T̂i ) =
N∑
k=1
(Ĝ(k) − T̂i (k))

2 (1)

Phase information could be used to reduce false positives or to
distinguish between targets of different phases but with the same
velocity. Let α be the phase difference. The cosine of α (cos(α)) can
be computed as the dot product between the normalized baseline
vectors of Ĝ and T̂i . The SSD and cos(α) values can be combined
to produce an adjusted measure that reflects not just similarity in
trajectory shape, but also in phase.

The complete description of the algorithm is presented in Al-
gorithms 4 (main algorithm for Profile Matching) and 5 (auxiliary
function Rotate and Scale). The last statement of Algorithm 4, in
which ct is computed, shows how SSD and cos(α) are combined, to
produce a similarity measure in the [−1, 1] range, with values next
to 1 meaning high similarity in trajectory shape and phase, and
smaller values meaning low similarity (due mismatching of either
trajectory or phase).

3.5 Thresholding and Filtering Procedures
The metrics discussed so far quantify the similarity between the
trajectories of the gaze point and the target within a given window.
A window is considered activated if the metric crosses a certain
threshold, typically empirically determined to give more weight to
precision or recall, depending on the requirements of the applica-
tion. However, triggering system actions based on a decision made
on a single window is prone to false activations due to spurious
high correlations. Therefore, to increase the robustness of the sys-
tem, we consider the output of multiple consecutive windows in a
post-hoc filter. The simplest implementation is to trigger a system
action if all (or most) of a given number of consecutive windows
cross the threshold.

Though this is often sufficient, it might lead to false negatives,
due to the difficulty of maintaining a high correlation for a long pe-
riod of time. An alternative is to use a bi-level threshold [Negulescu

ALGORITHM 4: Profile Matching (PM)
Input: AT × 2 time series with uncalibrated 2D coordinates of

the gaze point P(In) =
{
x Int ,y

In
t
}
at time t ; a T × 2

time series with the 2D coordinates
P(Out) =

{
xOutt ,yOutt

}
of targets on the screen at

time t ; a window size N < T .
Output: An array c of length T , with matching scores (in the

[-1, 1] range) computed for each gaze-target window
of size N .

for t ∈ N ..T do

W In
x ← {x

In
t−N ..x

In
t };

W In
y ← {yInt−N ..y

In
t };

WOut
x ← {xOutt−N ..x

Out
t };

WOut
y ← {yOutt−N ..y

Out
t };

(W In
u ,W

In
v ,
®bIn ) ← rot_scale(W In

x ,W
In
y );

(WOut
u ,WOut

v , ®bOut ) ← rot_scale(WOut
x ,WOut

y );

ssdt ←
t∑

i=t−N
(uIni − u

Out
i )2 + (v Ini −v

Out
i )2;

cos(α) ← ®bIn · ®bOut ;

ct ←
cos(α)

1 + ln(1 + ssdt )
;

end

et al. 2012], as implemented in PathSync [Carter et al. 2016]. The
idea is to set two thresholds—after crossing the higher one, the user
must only maintain a correlation above the lower one for a certain
duration in order to activate it. If the correlation goes below the
lower threshold, it must cross the higher one again. This makes the
system more lenient immediately after a high correlation is found,
which tends to reduce the false negative rate.

In this paper, we compare the performance of the four metrics us-
ing a one-level threshold (Simple) and a bi-level threshold (Double).
In addition, we compare the results with and without a post-hoc
filter and evaluate the effect of the number of consecutive windows
necessary to trigger an action on the performance results of the
best performing metric.

4 EVALUATION
We evaluated the proposed approaches for quantifying the similar-
ity of the gaze and target trajectories using the same dataset that
Esteves et al. employed for defining the system parameters in Or-
bits [Esteves et al. 2015b]. In this dataset, 12 participants performed
tasks where they were asked to follow a target moving on a circular
trajectory, to read the time while ignoring such moving target, to
read a news article, to play a video game, and to watch a video. In
the target-following task, the targets moved along trajectories of
three different sizes and with three different speeds. The authors
found the optimal design to be the one with the largest trajectory
diameter (2.6cm/2.63o ) and the medium speed (.33Hz), so we only
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ALGORITHM 5: Rotate and Scale (rot_scale)
Input: Two N sized arrays representing x and y coordinates

of a set of 2D points: Px = {xi } and Py = {yi }.
Output: Two N sized arrays Qu and Qv representing u and v

coordinates of input points after transformation. The
transformation centres each pi = (xi ,yi ) at (x0,y0),
rotates it along the point set’s baseline, and scales it
by the inverse of the baseline length; also the
normalised baseline vector ®b is returned.

p0 ← (x0,y0);
pm ← (x j ,yj ) such that |pm − p0 | is maximum;

s ←
1

|pm − p0 |
;

®b ← s(pm − p0);
θ ← −atan2(by ,bx );

R←
[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
;

Qu ← ∅; Qv ← ∅;
for i ∈ 0..(N − 1) do

qi = (ui ,vi ) ← s(R × (pi − p0));
Qu ← Qu ∪ ui ; Qv ← Qv ∪vi ;

end

perform our analysis on the data in this condition. For a full de-
scription of the data collection procedure, see Esteves et al. [Esteves
et al. 2015b].

We segmented the time series to split it into steps. A step is
an uninterrupted data segment with the same experimental setup
conditions, meaning that every time the eye tracker lost track of
the user’s eyes or a new task began, we created a new segment.
This yielded a total of 50 steps where the user was supposed to
be following the target and 125 steps where they were not. We
use the task instruction as the ground truth label. There was no
overlapping data between consecutive steps. We smoothed out the
gaze data in each step with a 5-sample median filter.

In conditions without a visible target (i.e. reading text, watching
video, and playing video game), we simulated a moving target with
the same characteristics. In each step, we computed the similarity
between the gaze and target trajectories using the algorithms de-
scribed in the previous section in 30-sample windows (1s with a
30Hz eye tracker), as suggested by [Esteves et al. 2015b].

To quantify the performance of an approach, we first computed
the corresponding similarity metric for all windows in a step (with
one-sample overlaps), in every step. We then decided which win-
dows get activated in each step for a range of thresholds in 0.005
increments. For this purpose, we used both a simple threshold and
a bi-level threshold with a difference of .1 between the upper and
lower level. Finally, we computed the true- and false-positive rates
based on the number of steps that had any activated windows
within it for the same range of thresholds. Ideally, a step where the
user is following the target should have at least one activation, and

Metric Thresholding Post-Hoc TP5 FP90

BC
Both No .92 (.91) .05 (.91)

Simple Yes .80 (0.37) .07 (.21)
Double Yes .84 (.46) .07 (.26)

RC
Both No .80 (.94) .11 (.92)

Simple Yes .96 (.17) .00 (.63)
Double Yes .96 (.27) .00 (.73)

PM
Both No .90 (.64) .03 (.65)

Simple Yes .90 (.28) .05 (.28)
Double Yes .90 (.35) .05 (.35)

2D
Both No .86 (.66) .10 (.61)

Simple Yes .96 (.01) .00 (.07)
Double Yes .96 (.08) .00 (.18)

Table 1: True positive rate corresponding to a false positive
rate below 5% (TP5) and false positive rate corresponding to
a true positive rate above 90% (FP90) with corresponding co-
efficient thresholds.

a step where they are not should have none. To simplify the report-
ing of the trade-off between true and false positives, we present
the results in two cases of practical interest—TP5 is the highest
true positive rate for a threshold that yields a false positive rate
below 5%; and FP90 is the lowest false positive rate for a threshold
that yields a true positive rate above 90%. To give a more com-
plete picture of this trade-off, we also present the ROC curve with
the results for the best configuration of the four metrics. Finally,
we computed these results after applying a post-hoc filter, which
only triggered an activation after 30 consecutive activated windows
(with 1-sample overlaps). To evaluate the effect of the post-hoc filter
window size, we picked the best metric and computed the ROC
curve for a range of window sizes between 0 and 60 samples long,
in 5-sample increments.

5 RESULTS
Table 1 shows the results from our experiment, broken down by
the similarity metric (BC - Basic Correlation, RC - Rotated Correla-
tion, PM - Profile Matching, 2D - 2D Correlation), by thresholding
method (Simple or Double—in the cases without the post-hoc filter,
the results are the same for either thresholding approach), and by
whether a post-hoc filter was applied. The number between paren-
theses corresponds to the threshold used. When using a bi-level
threshold, the number corresponds to the upper threshold (the
lower threshold is equal to 0.1 less than the upper threshold). These
results are also presented graphically in Figures 3 and 4.

The best performing algorithms were the Rotated Correlation
with post-hoc filtering, and the 2D Correlation with post-hoc fil-
tering, regardless of the thresholding procedure used for both. In
these conditions, we achieved a 96% true-positive rate (with a false-
positive rate under 5%) and a 0% false-positive rate (with a true-
positive rate above 90%). Figure 5 (left and center) shows the ROC
curve with the true-positive/false-positive trade-off for the best
configuration of each method with and without the post-hoc filter.
The curve shows that despite the TP5 and FP90 rates being the same
for the 2D and Rotated Correlations, the 2D Correlation yielded a
curve closer to the upper left corner of the Cartesian space, and
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Figure 3: FP90 rates for each metric broken down by thresh-
olding procedure and whether a post-hoc filter was applied.
Though the Rotated Correlation presents the worst perfor-
mance without a post-hoc filter, the false positives practi-
cally disappear when it is applied.

therefore outperformed the Rotated Correlation. The 2D Correla-
tion and Rotated Correlation were followed by the Profile Matching,
and the Basic Correlation. For the Profile Matching, the observed
performance remained almost the same regardless of the use of
the post-hoc filter (just a slight increase in the FP90 rate, with TP5
remaining the same). For the Basic Correlation, performance was
in fact worse when the filter was used.

Our inspiration for using a bi-level threshold came from hand
gesture recognition [Negulescu et al. 2012]. In PathSync, users had
to match the movement of the target with their hand [Carter et al.
2016]. As a consequence, maintaining a high correlation would lead
to user fatigue and consequently a drop in the similarity metric.
Though in such cases, a bi-level threshold can help, contrary to our
previous beliefs and to what Carter et al. suggested [Carter et al.
2016], it had little effect on our results. We hypothesise that the
reason for this is that the eyes do not tire as easily as the hands when
following a moving target, and therefore, a drop in the similarity
metric only happens when the user stops following it.

The post-hoc filter, however, had a substantially positive impact
on the recognition performance for two metrics (Rotated Correla-
tion and 2D Correlation). By discarding a large number of false pos-
itives, the filter led to an average increase in the TP5 rate of 16% and
to a zero FP90 rate. The fact that by configuring these algorithms ap-
propriately it is possible to completely remove false positives is par-
ticularly impressive given that the negative steps were substantially
longer than the positive steps as the dataset had a lot more negative
samples than positive ones (NFalse = 31, 768;NT rue = 8, 613).

We also analysed the effect of the number of activated windows
necessary for triggering an action (i.e. the post-hoc filter window).
Figure 5-Right shows the ROC curve that illustrates this trade-off for
the 2D Correlation algorithm, showing that the best performance
is achieved for 30-40-sample windows.

Figure 4: TP5 rates for each metric broken down by thresh-
olding procedure and whether a post-hoc filter was applied.
Though the Profile Fitting Correlation performs well when
no post-hoc filter is applied, it is outperformed by the Ro-
tated Correlation when it is applied.

6 DISCUSSION
The task instruction was used as ground truth label for the dataset.
Because no check was performed to verify whether the participant
was actually following the target, we assume they followed the
instructions. Though the high performance results suggest they in-
deed followed these instructions, it is possible that a certain amount
of classification error can be explained by the participant not having
performed the task.

Two phenomena observed in the results deserve further discus-
sion: the small effect observed for the double threshold, and the
fact that the post-hoc filter did not improve TP5 and FP90 rates for
all four evaluated metrics.

We hypothesised that because the quality of an eye movement is
not expected to change in a short time frame (when compared, for
instance, with hand gestures), double thresholding does not lead
to significant improvements. Another possible explanation is that
more fine-tuning is required for selecting the difference between
thresholds. The strategy we used was to define a lower threshold
0.1 less than the upper threshold. It is possible that this variation is
not enough to accommodate a sequence of oscillating correlation
values (computed for a sequence of windows) that can be caused
by several factors such as noise, or inability of some metric to yield
a good response at every portion of the circular target trajectory.
Moreover, a variation between the upper and lower thresholds that
would be considered good for one metric, might not be appropriate
for all metrics. Thus, further investigation on how to define the
thresholds should be conducted to better understand the behaviour
of this approach.

Results also showed that post-hoc filtering had different out-
comes for each metric. The diverse nature of the metrics considered
in this paper can explain this. Though the output of the algorithms
have been normalised to the [-1, 1] range, each method presents
different probability distributions. Changes in threshold values af-
fect the rate of true positives and false positives in different ways
for each algorithm. For instance, lowering the threshold for one
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Figure 5: ROCCurve representing the trade-off between true- and false-positives aswe vary the algorithmparameters. Thefirst
two figures show the ROC curves for the four metrics without and with the post-hoc filter, as we vary the decision threshold.
The third curve shows the effect of the post-hoc filter window size on the performance of the 2D Correlation algorithm. Filters
that wait for 30-40 activated windows offer the best performance and a similar behaviour was found for the other metrics.

method might increase the number of false positives while having
little effect on the number of true positives. For some other metric,
both rates may be affected in a more similar way.

The purpose of post-hoc filtering is to increase robustness in
target activation by avoiding spurious high correlations that exceed
a threshold in a single window, but are not sustained for a given
number of consecutive windows. By being more strict, the filtering
reduces both the instances of false and true positive activations. As
the TP5 rate accepts a false positive ratio of up to 5%, the thresh-
old can be lowered, accepting more false positives and potentially
causing a new increase in the true positive ratio. However, there
is no guarantee that it will match the true positive ratio achieved
before filtering. As shown by our results, the performances of RC
and 2D are improved, while for the other metrics, BC’s performance
is worsened and PM remains about the same. This occurs because
changes in the threshold will affect each metric differently, depend-
ing on how the ratio of true positives and false positives changes
as the threshold decreases.

It can be observed in the PM ROC curve without filtering (Fig-
ure 5 at left) that lowering the threshold beyond the point where a
false positive ratio of 5% is observed results in a small increase in the
true positive ratio and a much larger increase in the false positive
ratio. Since the filter application results in a threshold reduction,
there is a considerably larger increase in false positives than in true
positives after the filter is applied, thus limiting its effectiveness.
On the other hand, as observed for the RC and 2D metrics, lowering
the threshold beyond the point where a false positive ratio of 5% is
observed still causes a significant increase in the true positive ratio.
Thus, we can observe that the proposed post-hoc filtering tends to
work better for metrics that present lower true positive rates when
applying to just a single window.

Another trade-off associatedwith the post-hoc filtering is relative
to the activation delay. At the same time that the post-hoc filtering
can be used to enhance target activation for some similarity metrics,
the time required to perform the activation will be longer, which
can be an issue depending on the intended application. In summary,
though the post-hoc filter can be very effective in removing false
positives, it also makes the system less responsive. In a scenario

where faster responses are required, our proposed PM metric can
be an interesting alternative. Without application of the post-hoc
filtering, the ROC curve for PM is the one closer to the upper left
corner of the Cartesian space, indicating that it outperforms the
other metrics in this scenario.

As a final limitation for our experiment, it is important to note
that we only computed the similarity metrics on 30-sample win-
dows, following Esteves et al.’s tests on the same dataset [Esteves
et al. 2015b]. Further, the dataset itself is limited in only considering
a single target, with a single trajectory shape and speed. Future
work should look into further movement designs.

7 CONCLUSION
Our goal in this paper was to develop a better understanding of
algorithms for implementing gaze-based motion correlation inter-
faces. Given the recent interest in this type of interaction, multiple
techniques had been proposed in the literature, without a system-
atic comparison to previous approaches. This paper set out to fill
this gap by comparing four similarity metrics, two thresholding
procedures, and one post-hoc filter for triggering activations. We
conducted an experiment on Esteves et al.’s [Esteves et al. 2015b]
dataset and found that an algorithm that uses the 2D Correlation
as a similarity metric and filters out false positives using a post-hoc
filter with a window of 30 samples achieved the best performance.

These results are important considering that the large majority of
systems published that employ selection by motion correlation use
the metric that we call Basic Correlation, which in our experiment
was outperformed by all alternatives.

ACKNOWLEDGMENTS
The authors would like to thank the financial support from the São
Paulo Research Foundation (FAPESP), grants No. 2016/10148-3 and
No. 2017/50121-0. This work was partly supported by the FAPESP-
University of Melbourne SPRINT Grant and by a University of
Melbourne Early Career Researcher Grant.



Circular Orbits Detection Using 2D Correlation and Profile Matching ETRA ’18, June 14–17, 2018, Warsaw, Poland

REFERENCES
Marcus Carter, Eduardo Velloso, John Downs, Abigail Sellen, Kenton O’Hara, and

Frank Vetere. 2016. PathSync: Multi-User Gestural Interaction with Touchless
Rhythmic Path Mimicry. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 3415–3427.
https://doi.org/10.1145/2858036.2858284

Christopher Clarke, Alessio Bellino, Augusto Esteves, and Hans Gellersen. 2017. Re-
mote Control by Body Movement in Synchrony with Orbiting Widgets: An Evalu-
ation of TraceMatch. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3,
Article 45 (Sept. 2017), 22 pages. https://doi.org/10.1145/3130910

Christopher Clarke, Alessio Bellino, Augusto Esteves, Eduardo Velloso, and Hans
Gellersen. 2016. TraceMatch: A Computer Vision Technique for User Input by
Tracing of Animated Controls. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’16). ACM, New York,
NY, USA, 298–303. https://doi.org/10.1145/2971648.2971714

Christopher Clarke and Hans Gellersen. 2017. MatchPoint: Spontaneous Spatial
Coupling of Body Movement for Touchless Pointing. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software and Technology (UIST ’17). ACM,
New York, NY, USA, 179–192. https://doi.org/10.1145/3126594.3126626

Travis Cox, Marcus Carter, and Eduardo Velloso. 2016. Public DisPLAY: Social Games
on Interactive Public Screens. In Proceedings of the 28th Australian Conference on
Computer-Human Interaction (OzCHI ’16). ACM, New York, NY, USA, 371–380.
https://doi.org/10.1145/3010915.3010917

Murtaza Dhuliawala, Juyoung Lee, Junichi Shimizu, Andreas Bulling, Kai Kunze, Thad
Starner, and Woontack Woo. 2016. Smooth Eye Movement Interaction Using EOG
Glasses. In Proceedings of the 18th ACM International Conference on Multimodal
Interaction (ICMI 2016). ACM, New York, NY, USA, 307–311. https://doi.org/10.
1145/2993148.2993181

Augusto Esteves, Eduardo Velloso, Andreas Bulling, and Hans Gellersen. 2015a. Orbits:
Enabling Gaze Interaction in Smart Watches Using Moving Targets. In Adjunct Pro-
ceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium on Wear-
able Computers (UbiComp/ISWC’15 Adjunct). ACM, New York, NY, USA, 419–422.
https://doi.org/10.1145/2800835.2800942

Augusto Esteves, Eduardo Velloso, Andreas Bulling, and Hans Gellersen. 2015b. Or-
bits: Gaze Interaction for Smart Watches Using Smooth Pursuit Eye Movements.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology (UIST ’15). ACM, New York, NY, USA, 457–466. https://doi.org/10.1145/
2807442.2807499

Augusto Esteves, David Verweij, Liza Suraiya, Rasel Islam, Youryang Lee, and Ian
Oakley. 2017. SmoothMoves: Smooth Pursuits Head Movements for Augmented
Reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). ACM, New York, NY, USA, 167–178. https://doi.org/10.
1145/3126594.3126616

Jean-Daniel Fekete, Niklas Elmqvist, and Yves Guiard. 2009. Motion-pointing: Target
Selection Using Elliptical Motions. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’09). ACM, New York, NY, USA, 289–298.
https://doi.org/10.1145/1518701.1518748

Jari Kangas, Oleg Špakov, Poika Isokoski, Deepak Akkil, Jussi Rantala, and Roope
Raisamo. 2016. Feedback for Smooth Pursuit Gaze Tracking Based Control. In
Proceedings of the 7th Augmented Human International Conference 2016 (AH ’16).
ACM, New York, NY, USA, Article 6, 8 pages. https://doi.org/10.1145/2875194.
2875209

Mohamed Khamis, Florian Alt, and Andreas Bulling. 2015. A Field Study on Spon-
taneous Gaze-based Interaction with a Public Display Using Pursuits. In Adjunct
Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing and Proceedings of the 2015 ACM International Symposium on
Wearable Computers (UbiComp/ISWC’15 Adjunct). ACM, New York, NY, USA, 863–
872. https://doi.org/10.1145/2800835.2804335

Mohamed Khamis, Ozan Saltuk, Alina Hang, Katharina Stolz, Andreas Bulling, and
Florian Alt. 2016a. TextPursuits: Using Text for Pursuits-based Interaction and
Calibration on Public Displays. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’16). ACM, New York,
NY, USA, 274–285. https://doi.org/10.1145/2971648.2971679

Mohamed Khamis, Ludwig Trotter, Markus Tessmann, Christina Dannhart, Andreas
Bulling, and Florian Alt. 2016b. EyeVote in the Wild: Do Users Bother Correcting
System Errors on Public Displays?. In Proceedings of the 15th International Conference
on Mobile and Ubiquitous Multimedia (MUM ’16). ACM, New York, NY, USA, 57–62.
https://doi.org/10.1145/3012709.3012743

Matei Negulescu, Jaime Ruiz, and Edward Lank. 2012. A Recognition Safety Net:
Bi-level Threshold Recognition for Mobile Motion Gestures. In Proceedings of the
14th International Conference on Human-computer Interaction with Mobile Devices
and Services (MobileHCI ’12). ACM, New York, NY, USA, 147–150. https://doi.org/
10.1145/2371574.2371598

Joshua Newn, Eduardo Velloso, Marcus Carter, and Frank Vetere. 2016. Multimodal
Segmentation on a Large Interactive Tabletop: Extending Interaction on Horizontal
Surfaces with Gaze. In Proceedings of the 2016 ACM International Conference on

Interactive Surfaces and Spaces (ISS ’16). ACM, New York, NY, USA, 251–260. https:
//doi.org/10.1145/2992154.2992179

Ken Pfeuffer, Melodie Vidal, Jayson Turner, Andreas Bulling, and Hans Gellersen. 2013.
Pursuit Calibration: Making Gaze Calibration Less Tedious and More Flexible. In
Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology (UIST ’13). ACM, New York, NY, USA, 261–270. https://doi.org/10.1145/
2501988.2501998

Junichi Shimizu, Juyoung Lee, Murtaza Dhuliawala, Andreas Bulling, Thad Starner,
Woontack Woo, and Kai Kunze. 2016. Solar System: Smooth Pursuit Interactions
Using EOG Glasses. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct (UbiComp ’16). ACM, New York,
NY, USA, 369–372. https://doi.org/10.1145/2968219.2971376

Eduardo Velloso, Marcus Carter, Joshua Newn, Augusto Esteves, Christopher Clarke,
and Hans Gellersen. 2017. Motion Correlation: Selecting Objects by Matching
Their Movement. ACM Trans. Comput.-Hum. Interact. 24, 3, Article 22 (April 2017),
35 pages. https://doi.org/10.1145/3064937

Eduardo Velloso, Markus Wirth, Christian Weichel, Augusto Esteves, and Hans
Gellersen. 2016. AmbiGaze: Direct Control of Ambient Devices by Gaze. In Proceed-
ings of the 2016 ACM Conference on Designing Interactive Systems (DIS ’16). ACM,
New York, NY, USA, 812–817. https://doi.org/10.1145/2901790.2901867

David Verweij, Augusto Esteves, Vassilis-Javed Khan, and Saskia Bakker. 2017a. Smart
Home Control Using Motion Matching and Smart Watches. In Proceedings of the
2017 ACM International Conference on Interactive Surfaces and Spaces (ISS ’17). ACM,
New York, NY, USA, 466–468. https://doi.org/10.1145/3132272.3132283

David Verweij, Augusto Esteves, Vassilis-Javed Khan, and Saskia Bakker. 2017b.
WaveTrace: Motion Matching Input Using Wrist-Worn Motion Sensors. In Pro-
ceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’17). ACM, New York, NY, USA, 2180–2186. https:
//doi.org/10.1145/3027063.3053161

David Verweij, Vassilis-Javed Khan, Augusto Esteves, and Saskia Bakker. 2017c. Multi-
User Motion Matching Interaction for Interactive Television Using Smartwatches.
In Adjunct Publication of the 2017 ACM International Conference on Interactive
Experiences for TV and Online Video (TVX ’17 Adjunct). ACM, New York, NY, USA,
67–68. https://doi.org/10.1145/3084289.3089906

Mélodie Vidal, Andreas Bulling, and Hans Gellersen. 2012. Detection of Smooth
Pursuits Using Eye Movement Shape Features. In Proceedings of the Symposium
on Eye Tracking Research and Applications (ETRA ’12). ACM, New York, NY, USA,
177–180. https://doi.org/10.1145/2168556.2168586

Mélodie Vidal, Andreas Bulling, and Hans Gellersen. 2013. Pursuits: Spontaneous
Interaction with Displays Based on Smooth Pursuit Eye Movement and Moving
Targets. In Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ’13). ACM, New York, NY, USA, 439–448.
https://doi.org/10.1145/2493432.2493477

JohnWilliamson. 2006. Continuous uncertain interaction. Ph.D. Dissertation. University
of Glasgow.

John Williamson and Roderick Murray-Smith. 2004. Pointing Without a Pointer. In
CHI ’04 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’04).
ACM, New York, NY, USA, 1407–1410. https://doi.org/10.1145/985921.986076

View publication stats

https://doi.org/10.1145/2858036.2858284
https://doi.org/10.1145/3130910
https://doi.org/10.1145/2971648.2971714
https://doi.org/10.1145/3126594.3126626
https://doi.org/10.1145/3010915.3010917
https://doi.org/10.1145/2993148.2993181
https://doi.org/10.1145/2993148.2993181
https://doi.org/10.1145/2800835.2800942
https://doi.org/10.1145/2807442.2807499
https://doi.org/10.1145/2807442.2807499
https://doi.org/10.1145/3126594.3126616
https://doi.org/10.1145/3126594.3126616
https://doi.org/10.1145/1518701.1518748
https://doi.org/10.1145/2875194.2875209
https://doi.org/10.1145/2875194.2875209
https://doi.org/10.1145/2800835.2804335
https://doi.org/10.1145/2971648.2971679
https://doi.org/10.1145/3012709.3012743
https://doi.org/10.1145/2371574.2371598
https://doi.org/10.1145/2371574.2371598
https://doi.org/10.1145/2992154.2992179
https://doi.org/10.1145/2992154.2992179
https://doi.org/10.1145/2501988.2501998
https://doi.org/10.1145/2501988.2501998
https://doi.org/10.1145/2968219.2971376
https://doi.org/10.1145/3064937
https://doi.org/10.1145/2901790.2901867
https://doi.org/10.1145/3132272.3132283
https://doi.org/10.1145/3027063.3053161
https://doi.org/10.1145/3027063.3053161
https://doi.org/10.1145/3084289.3089906
https://doi.org/10.1145/2168556.2168586
https://doi.org/10.1145/2493432.2493477
https://doi.org/10.1145/985921.986076
https://www.researchgate.net/publication/324908381

	Abstract
	1 Introduction
	2 Related Work
	2.1 Selection by Motion Correlation
	2.2 Selection by Smooth Pursuits

	3 Similarity Metrics
	3.1 Basic Correlation
	3.2 Rotated Correlation
	3.3 2D Correlation
	3.4 Profile Matching
	3.5 Thresholding and Filtering Procedures

	4 Evaluation
	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

